QuantStudio 6/7: CMI Getting Started Guide to qPCR

Sample Preparation

Getting Started

Data Collection

<u>Shutdown</u>

Introduction

Quantitative PCR (qPCR), or Real-time PCR, allows PCR reactions to be monitored in real-time and is used for quantitation of DNA and RNA. Reactions are characterized by the time at which fluorescently-labeled PCR products are detected. The higher the starting copy number of the nucleic acid target, the sooner a significant increase in fluorescence is observed.

Instrument Overview

The CMI has a modified <u>QuantStudio 6/7</u> from Life Technologies used primarily for conventional Differential Scanning Fluorimetry (DSF). It is a hybrid between a QuantStudio 6 and 7, with decoupled excitation and emission filters.

Applications

- The SYBR Green I dye chemistry can be used for the following assay types:
 - One-step RT-PCR for RNA quantitation
 - Two-step RT-PCR for RNA quantitation
 - DNA/cDNA quantitation

Required Supplies

- 96-well FAST-block optical plate, such as LifeTechnologies MicroAmp FAST optical 96-well reaction plate, 0.1 mL, 4346907
- Optical adhesive film, such as LifeTechnologies MicroAmp Optical Adhesive Film, 4360954
- qPCR reagents including LifeTechnologies PowerUp SYBR Green Master Mix, A25742
- Primers and templates
- Pipettes (recommended)

Sample Preparation

Follow kit guidelines for sample preparation and experimental setup.

Getting Started

Resources

Additional resources are available at the instrument, including instrument manual.

Experimental Design Tips

- Target Ct values between 20-35:
 - o If lower, reduce template concentration.
 - If higher, raise template concentration.

CENTER FOR MACROMOLECULAR INTERACTIONS

- Test primers and template:
 - Two fold dilution series.
 - One cycle difference in Ct ~ 2X difference in concentration.
- Repeat measurements (2-4 replicates).
- Calculate and plot 2^{-Ct}.

General Care and Maintenance

- Keep the instrument door (on the right side) free of obstruction.
- If the control software won't connect to the instrument, restart the software. If the control software still won't connect, cycle the power on both the instrument and the computer.

Startup

- 1. Book time on the PPMS calendar before you start.
- 2. Login to the computer using your PPMS credentials (eCommons ID and password).
- 3. Set up the qPCR reaction plate
 - a. Following instructions from the kit protocol, mix samples and reagents.
 - b. Load 96-well FAST block optical plate. Include replicates and No-Protein Controls.
 - c. Cover the plate with optical film
- 4. Tap the touchscreen to wake the instrument from sleep by pressing the power button.
- 5. Open the instrument door.
- 6. Place the plate in the instrument and close the door.

Data Collection

- 1. Open the Quant Studio Real-Time PCR Software.
- 2. On the Setup tab, select Template or Experiment Setup.
 - a. If you open from template, then you may use your own or open the file.
- 3. Setup Tab:
 - a. Experiment Properties:
 - i) Experiment name: provide a name
 - ii) Instrument: Quant Studio 7
 - iii) Block: FAST 96
 - iv) Type: Standard Curve
 - v) Reagents: SYBR Green reagents
 - vi) Properties:
 - (1) Speed: FAST (or standard, depending on template and kit)
 - (2) Check the box to include melt curve.
 - b. Define:
 - i) Targets: Target 1.
 - (1) Reporter: SYBR.
 - (2) Quencher: NONE.
 - c. Passive Reference: ROX.
 - d. Assign:

CENTER FOR Macromolecular Interactions

- i) Select wells to read (select entire plate to avoid losing data from human error in well selection).
- e. Run Method:
 - i) Set reaction volume: 10 μ L (or 20 μ L).
 - ii) Graphical View is used to set ramp parameters (the example below highlights Fast ramp speed or according to kit instructions).
 - (1) Hold Stage:
 - (a) Fast ramp to 95 °C, hold 20 sec
 - (2) PCR Stage:
 - (a) 40 cycles
 - (b) 95 °C, hold 1 sec
 - (c) Fast ramp to 60 °C, hold 20 sec
 - (3) Melt Stage:
 - (a) Fast ramp to 95 °C, hold 15 sec
 - (b) Fast ramp to 60 °C, hold 1 min
 - (c) Slow ramp (0.05 $^\circ\text{C/s}$) to 95 $^\circ\text{C}$, hold 15 sec
 - iii) Optical Filters: select x1-m1 (for SYBR green) and x4-m4 (for ROX).
- 4. Save the experiment in your folder.
- 5. Run Tab: click Start Run and select the instrument number from the pulldown.
- 6. When data collection is complete, you must press the **Analyze** button before proceeding to data processing.
- 7. Examine the melt curves to check for single melt (multiple peaks indicate non-specific amplification).
- 8. Export Results (Ct value).
- 9. Save experiment.

<u>Shutdown</u>

- 1. Remove your plate from the instrument.
- 2. Clean up in and around the instrument.
- 3. Close the control software.
- 4. Logoff from PPMS!

Book time and Report Problems through the PPMS system: <u>https://ppms.us/hms-cmi</u>

• rates are based on *booked and real-time usage*.

Contact <u>cmi@hms.harvard.edu</u> with questions.

last edited: 2021-07-09