A Tunable Protein Piston That Breaks Membranes to Release Encapsulated Cargo

Date Published:

2016 Apr 15

Abstract:

Movement of molecules across membranes in response to a stimulus is a key component of cellular programming. Here, we characterize and manipulate the response of a protein-based piston capable of puncturing membranes in a pH-dependent manner. Our protein actuator consists of modified R bodies found in a bacterial endosymbiont of paramecium. We express and purify R bodies from in E. coli; these pistons undergo multiple rounds of rapid extension and retraction. We developed a high throughput screen for mutants with altered pH sensitivity for tuning of the extension process. We show that the R bodies are capable of acting as synthetic pH-dependent pistons that can puncture E. coli membranes to release the trapped content. As such, these protein machines present a novel way to selectively rupture membrane compartments and will be important for programming cellular compartmentalization.

Last updated on 07/26/2018