• CMI SEC-MALS system
  • CMI Jasco J815 CD instrument
  • CMI MST and ITC instruments
  • CMI SPR and BLI instruments
  • CMI Laboratory

Center for Macromolecular Interactions

Welcome to the Center for Macromolecular Interactions (CMI) in the department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School.  Our mission is to enhance basic research in the HMS community by providing scientific consultation, training and access to shared biophysical instruments for the characterization and analysis of macromolecules and their complexes.

The facility currently includes instruments for Isothermal Titration Calorimetry (ITC)Surface Plasmon Resonance (SPR)Biolayer Interferometry (BLI)Differential Scanning Fluorimetry (DSF)Circular Dichroism (CD)Analytical Size Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS), and MicroScale Thermophoresis (MST)

Recent CMI User Publications

Silva CM, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, Zhang T, Huang H-T, Lucente DE, Dickerson BC, Mitchison TJ, Fischer ES, Gray NS, Haggarty SJ. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife 2019;8Abstract
Tauopathies are neurodegenerative diseases characterized by aberrant forms of tau protein accumulation leading to neuronal death in focal brain areas. Positron emission tomography (PET) tracers that bind to pathological tau are used in diagnosis, but there are no current therapies to eliminate these tau species. We employed targeted protein degradation technology to convert a tau PET-probe into a functional degrader of pathogenic tau. The hetero-bifunctional molecule QC-01-175 was designed to engage both tau and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4, to trigger tau ubiquitination and proteasomal degradation. QC-01-175 effected clearance of tau in frontotemporal dementia (FTD) patient-derived neuronal cell models, with minimal effect on tau from neurons of healthy controls, indicating specificity for disease-relevant forms. QC-01-175 also rescued stress vulnerability in FTD neurons, phenocopying CRISPR-mediated -knockout. This work demonstrates that aberrant tau in FTD patient-derived neurons is amenable to targeted degradation, representing an important advance for therapeutics.
Wang L, Fu T-M, Zhou Y, Xia S, Greka A, Wu H. Structures and gating mechanism of human TRPM2. Science 2018;362(6421)Abstract
Transient receptor potential (TRP) melastatin 2 (TRPM2) is a cation channel associated with numerous diseases. It has a C-terminal NUDT9 homology (NUDT9H) domain responsible for binding adenosine diphosphate (ADP)-ribose (ADPR), and both ADPR and calcium (Ca) are required for TRPM2 activation. Here we report cryo-electron microscopy structures of human TRPM2 alone, with ADPR, and with ADPR and Ca NUDT9H forms both intra- and intersubunit interactions with the N-terminal TRPM homology region (MHR1/2/3) in the apo state but undergoes conformational changes upon ADPR binding, resulting in rotation of MHR1/2 and disruption of the intersubunit interaction. The binding of Ca further engages transmembrane helices and the conserved TRP helix to cause conformational changes at the MHR arm and the lower gating pore to potentiate channel opening. These findings explain the molecular mechanism of concerted TRPM2 gating by ADPR and Ca and provide insights into the gating mechanism of other TRP channels.
Feng J, Dong X, Pinello J, Zhang J, Lu C, Iacob RE, Engen JR, Snell WJ, Springer TA. Fusion surface structure, function, and dynamics of gamete fusogen HAP2. Elife 2018;7Abstract
HAP2 is a class II gamete fusogen in many eukaryotic kingdoms. A crystal structure of HAP2 shows a trimeric fusion state. Domains D1, D2.1 and D2.2 line the 3-fold axis; D3 and a stem pack against the outer surface. Surprisingly, hydrogen-deuterium exchange shows that surfaces of D1, D2.2 and D3 closest to the 3-fold axis are more dynamic than exposed surfaces. Three fusion helices in the fusion loops of each monomer expose hydrophobic residues at the trimer apex that are splayed from the 3-fold axis, leaving a solvent-filled cavity between the fusion loops in each monomer. At the base of the two fusion loops, Arg185 docks in a carbonyl cage. Comparisons to other structures, dynamics, and the greater effect on gamete fusion of mutation of axis-proximal than axis-distal fusion helices suggest that the apical portion of each monomer could tilt toward the 3-fold axis with merger of the fusion helices into a common fusion surface.
Graham TGW, Carney SM, Walter JC, Loparo JJ. A single XLF dimer bridges DNA ends during nonhomologous end joining. Nat Struct Mol Biol 2018;25(9):877-884.Abstract
Nonhomologous end joining (NHEJ) is the primary pathway of DNA double-strand-break repair in vertebrate cells, yet how NHEJ factors assemble a synaptic complex that bridges DNA ends remains unclear. To address the role of XRCC4-like factor (XLF) in synaptic-complex assembly, we used single-molecule fluorescence imaging in Xenopus laevis egg extract, a system that efficiently joins DNA ends. We found that a single XLF dimer binds DNA substrates just before the formation of a ligation-competent synaptic complex between DNA ends. The interaction of both globular head domains of the XLF dimer with XRCC4 is required for efficient formation of this synaptic complex. Our results indicate that, in contrast to a model in which filaments of XLF and XRCC4 bridge DNA ends, binding of a single XLF dimer facilitates the assembly of a stoichiometrically well-defined synaptic complex.

Latest News