• CMI SEC-MALS system
  • CMI Jasco J815 CD instrument
  • CMI MST and ITC instruments
  • CMI SPR and BLI instruments
  • CMI Laboratory

Center for Macromolecular Interactions

Welcome to the Center for Macromolecular Interactions (CMI) in the department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School.  Our mission is to enhance basic research in the HMS community by providing scientific consultation, training and access to shared biophysical instruments for the characterization and analysis of macromolecules and their complexes.

The facility currently includes instruments for Isothermal Titration Calorimetry (ITC)Surface Plasmon Resonance (SPR)Biolayer Interferometry (BLI)Differential Scanning Fluorimetry (DSF)Circular Dichroism (CD)Analytical Size Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS), and MicroScale Thermophoresis (MST)

Recent CMI User Publications

Feng J, Dong X, Pinello J, Zhang J, Lu C, Iacob RE, Engen JR, Snell WJ, Springer TA. Fusion surface structure, function, and dynamics of gamete fusogen HAP2. Elife 2018;7Abstract
HAP2 is a class II gamete fusogen in many eukaryotic kingdoms. A crystal structure of HAP2 shows a trimeric fusion state. Domains D1, D2.1 and D2.2 line the 3-fold axis; D3 and a stem pack against the outer surface. Surprisingly, hydrogen-deuterium exchange shows that surfaces of D1, D2.2 and D3 closest to the 3-fold axis are more dynamic than exposed surfaces. Three fusion helices in the fusion loops of each monomer expose hydrophobic residues at the trimer apex that are splayed from the 3-fold axis, leaving a solvent-filled cavity between the fusion loops in each monomer. At the base of the two fusion loops, Arg185 docks in a carbonyl cage. Comparisons to other structures, dynamics, and the greater effect on gamete fusion of mutation of axis-proximal than axis-distal fusion helices suggest that the apical portion of each monomer could tilt toward the 3-fold axis with merger of the fusion helices into a common fusion surface.
Graham TGW, Carney SM, Walter JC, Loparo JJ. A single XLF dimer bridges DNA ends during nonhomologous end joining. Nat Struct Mol Biol 2018;25(9):877-884.Abstract
Nonhomologous end joining (NHEJ) is the primary pathway of DNA double-strand-break repair in vertebrate cells, yet how NHEJ factors assemble a synaptic complex that bridges DNA ends remains unclear. To address the role of XRCC4-like factor (XLF) in synaptic-complex assembly, we used single-molecule fluorescence imaging in Xenopus laevis egg extract, a system that efficiently joins DNA ends. We found that a single XLF dimer binds DNA substrates just before the formation of a ligation-competent synaptic complex between DNA ends. The interaction of both globular head domains of the XLF dimer with XRCC4 is required for efficient formation of this synaptic complex. Our results indicate that, in contrast to a model in which filaments of XLF and XRCC4 bridge DNA ends, binding of a single XLF dimer facilitates the assembly of a stoichiometrically well-defined synaptic complex.
Koenigsberg AL, Heldwein E. The dynamic nature of the conserved tegument protein UL37 of herpesviruses. J Biol Chem 2018;Abstract
In all herpesviruses, the space between the capsid shell and the lipid envelope is occupied by the unique tegument layer composed of proteins that in addition to structural, play many other roles in the viral replication. UL37 is a highly conserved tegument protein that has activities ranging from virion morphogenesis to directional capsid trafficking to manipulation of the host innate immune response and binds multiple partners. The N-terminal half of UL37 (UL37N) has a compact bean-shaped alpha-helical structure that contains a surface region essential for neuroinvasion. However, no biochemical or structural information is currently available for the C-terminal half of UL37 (UL37C) that mediates most of its interactions with multiple binding partners. Here, we show that PRV UL37C is a conformationally flexible monomer composed of an elongated folded core and an unstructured C-tail. This elongated structure, along with that of its binding partner UL36, explains the nature of filamentous tegument structures bridging the capsid and the envelope. We propose that the dynamic nature of UL37 underlies its ability to perform diverse roles during viral replication.
Pan B, Akyuz N, Liu X-P, Asai Y, Nist-Lund C, Kurima K, Derfler BH, György B, Limapichat W, Walujkar S, Wimalasena LN, Sotomayor M, Corey DP, Holt JR. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 2018;99(4):736-753.e6.Abstract
The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.

Latest News