The oncomodulin receptor ArmC10 enables axon regeneration in mice after nerve injury and neurite outgrowth in human iPSC-derived sensory neurons

Citation:

Xie L, Yin Y, Jayakar S, Kawaguchi R, Wang Q, Peterson S, Shi C, Turnes BL, Zhang Z, Oses-Prieto J, Li J, Burlingame A, Woolf CJ, Geschwind D, Rasband M, Benowitz LI. The oncomodulin receptor ArmC10 enables axon regeneration in mice after nerve injury and neurite outgrowth in human iPSC-derived sensory neurons. Sci Transl Med 2023;15(708):eadg6241.

Date Published:

2023 Aug 09

Abstract:

Oncomodulin (Ocm) is a myeloid cell-derived growth factor that enables axon regeneration in mice and rats after optic nerve injury or peripheral nerve injury, yet the mechanisms underlying its activity are unknown. Using proximity biotinylation, coimmunoprecipitation, surface plasmon resonance, and ectopic expression, we have identified armadillo-repeat protein C10 (ArmC10) as a high-affinity receptor for Ocm. ArmC10 deletion suppressed inflammation-induced axon regeneration in the injured optic nerves of mice. ArmC10 deletion also suppressed the ability of lesioned sensory neurons to regenerate peripheral axons rapidly after a second injury and to regenerate their central axons after spinal cord injury in mice (the conditioning lesion effect). Conversely, Ocm acted through ArmC10 to accelerate optic nerve and peripheral nerve regeneration and to enable spinal cord axon regeneration in these mouse nerve injury models. We showed that ArmC10 is highly expressed in human-induced pluripotent stem cell-derived sensory neurons and that exposure to Ocm altered gene expression and enhanced neurite outgrowth. ArmC10 was also expressed in human monocytes, and Ocm increased the expression of immune modulatory genes in these cells. These findings suggest that Ocm acting through its receptor ArmC10 may be a useful therapeutic target for nerve repair and immune modulation.

Last updated on 09/27/2023