Publications

2019
Schmidt HR. Structural and Biochemical Investigations of Sigma Receptors. Harvard University Division of Medical Sciences 2019;Abstract
The sigma-1 and sigma-2 receptors are a pair of enigmatic membrane proteins that are promising drug targets for the treatment of several conditions. Ligands targeting the sigma-1 receptor may be useful for the treatment of neuropathic pain, ischemic stroke, Alzheimer’s disease, and other neurodegenerative diseases. Ligands targeting the sigma-2 receptor hold promise for the treatment and imaging of cancer, and for the treatment of the negative symptoms of schizophrenia. Since the discovery of these receptors, myriad small molecules have been identified that bind to these receptors with high affinity. However, despite their pharmacological tractability and therapeutic potential, the basic molecular functions of the sigma receptors remain ambiguous. The work presented in this dissertation makes key advances towards understanding the molecular biology of both sigma-1 and sigma-2 receptors. In this dissertation, I describe the first crystal structures of the human sigma-1 receptor bound to five different small molecule ligands, including classical antagonist and an agonist. These structures provide a model of the sigma-1 receptor’s structure, reveal how it binds a multitude of small ligands with high (<100 nM) affinity, and suggests a structural mechanism by which agonists may differ from antagonists. Additionally, a detailed analysis of sigma-1 receptor ligand-binding kinetics provides key insights into receptor-ligand interactions. Notably, this work reveals that the association between the sigma-1 receptor and its ligands is a multi-step process that is rate limited by a conformational change in the receptor prior to ligand binding. Finally, we identified the gene that codes for the sigma-2 receptor as Tmem97, resolving a nearly 40-year old pharmacological mystery. The identification of the sigma-2 receptor as TMEM97 unities two previously independent fields of study, simultaneously providing the sigma-2 receptor field with access to modern molecular biological techniques and the TMEM97 field with a diverse collection of pharmacological tools. Collectively, the work described here represents progress towards a molecular understanding of sigma receptor function, which will be crucial to realizing the full therapeutic potential of these enigmatic receptors.
2018
Wang L, Fu T-M, Zhou Y, Xia S, Greka A, Wu H. Structures and gating mechanism of human TRPM2. Science 2018;362(6421)Abstract
Transient receptor potential (TRP) melastatin 2 (TRPM2) is a cation channel associated with numerous diseases. It has a C-terminal NUDT9 homology (NUDT9H) domain responsible for binding adenosine diphosphate (ADP)-ribose (ADPR), and both ADPR and calcium (Ca) are required for TRPM2 activation. Here we report cryo-electron microscopy structures of human TRPM2 alone, with ADPR, and with ADPR and Ca NUDT9H forms both intra- and intersubunit interactions with the N-terminal TRPM homology region (MHR1/2/3) in the apo state but undergoes conformational changes upon ADPR binding, resulting in rotation of MHR1/2 and disruption of the intersubunit interaction. The binding of Ca further engages transmembrane helices and the conserved TRP helix to cause conformational changes at the MHR arm and the lower gating pore to potentiate channel opening. These findings explain the molecular mechanism of concerted TRPM2 gating by ADPR and Ca and provide insights into the gating mechanism of other TRP channels.
Gandhi AK, Kim WM, Sun Z-YJ, Huang Y-H, Bonsor DA, Sundberg EJ, Kondo Y, Wagner G, Kuchroo VK, Petsko G, Blumberg RS. High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Sci Rep 2018;8(1):17512.Abstract
T-cell immunoglobulin and mucin domain containing protein-3 (TIM-3) is an important immune regulator. Here, we describe a novel high resolution (1.7 Å) crystal structure of the human (h)TIM-3 N-terminal variable immunoglobulin (IgV) domain with bound calcium (Ca) that was confirmed by nuclear magnetic resonance (NMR) spectroscopy. Significant conformational differences were observed in the B-C, C'-C″ and C'-D loops of hTIM-3 compared to mouse (m)TIM-3, hTIM-1 and hTIM-4. Further, the conformation of the C-C' loop of hTIM-3 was notably different from hTIM-4. Consistent with the known metal ion-dependent binding of phosphatidylserine (PtdSer) to mTIM-3 and mTIM-4, the NMR spectral analysis and crystal structure of Ca-bound hTIM-3 revealed that residues in the hTIM-3 F-G loop coordinate binding to Ca. In addition, we established a novel biochemical assay to define hTIM-3 functionality as determined by binding to human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). These studies provide new insights useful for understanding and targeting hTIM-3.
Martin SES, Tan Z-W, Itkonen HM, Duveau DY, Paulo JA, Janetzko J, Boutz PL, Törk L, Moss FA, Thomas CJ, Gygi SP, Lazarus MB, Walker S. Structure-Based Evolution of Low Nanomolar O-GlcNAc Transferase Inhibitors. J Am Chem Soc 2018;140(42):13542-13545.Abstract
Reversible glycosylation of nuclear and cytoplasmic proteins is an important regulatory mechanism across metazoans. One enzyme, O-linked N-acetylglucosamine transferase (OGT), is responsible for all nucleocytoplasmic glycosylation and there is a well-known need for potent, cell-permeable inhibitors to interrogate OGT function. Here we report the structure-based evolution of OGT inhibitors culminating in compounds with low nanomolar inhibitory potency and on-target cellular activity. In addition to disclosing useful OGT inhibitors, the structures we report provide insight into how to inhibit glycosyltransferases, a family of enzymes that has been notoriously refractory to inhibitor development.
Feng J, Dong X, Pinello J, Zhang J, Lu C, Iacob RE, Engen JR, Snell WJ, Springer TA. Fusion surface structure, function, and dynamics of gamete fusogen HAP2. Elife 2018;7Abstract
HAP2 is a class II gamete fusogen in many eukaryotic kingdoms. A crystal structure of HAP2 shows a trimeric fusion state. Domains D1, D2.1 and D2.2 line the 3-fold axis; D3 and a stem pack against the outer surface. Surprisingly, hydrogen-deuterium exchange shows that surfaces of D1, D2.2 and D3 closest to the 3-fold axis are more dynamic than exposed surfaces. Three fusion helices in the fusion loops of each monomer expose hydrophobic residues at the trimer apex that are splayed from the 3-fold axis, leaving a solvent-filled cavity between the fusion loops in each monomer. At the base of the two fusion loops, Arg185 docks in a carbonyl cage. Comparisons to other structures, dynamics, and the greater effect on gamete fusion of mutation of axis-proximal than axis-distal fusion helices suggest that the apical portion of each monomer could tilt toward the 3-fold axis with merger of the fusion helices into a common fusion surface.
LoGerfo PJ. Development of a Small Molecule Inhibitor of Interleukin-18 for the Prevention of Vein Graft Failure or Other Inflammatory Diseases. ALM thesis 2018;Abstract
Overexpression of Interleukin-18 (IL18), a pleiotropic pro-inflammatory cytokine has been implicated in the early pathogenesis of intimal hyperplasia (IH), the leading cause of delayed graft failure. IL18 Binding Protein (IL18BP) is the natural inhibitor of IL18. Although recombinant IL-18BP is being clinically tested as a potential therapy to treat IL-18 associated conditions, a small molecule inhibitor of IL-18 may be clinically more amenable and feasible as a potential therapy to prevent IH development or other chronic inflammatory diseases.
Graham TGW, Carney SM, Walter JC, Loparo JJ. A single XLF dimer bridges DNA ends during nonhomologous end joining. Nat Struct Mol Biol 2018;25(9):877-884.Abstract
Nonhomologous end joining (NHEJ) is the primary pathway of DNA double-strand-break repair in vertebrate cells, yet how NHEJ factors assemble a synaptic complex that bridges DNA ends remains unclear. To address the role of XRCC4-like factor (XLF) in synaptic-complex assembly, we used single-molecule fluorescence imaging in Xenopus laevis egg extract, a system that efficiently joins DNA ends. We found that a single XLF dimer binds DNA substrates just before the formation of a ligation-competent synaptic complex between DNA ends. The interaction of both globular head domains of the XLF dimer with XRCC4 is required for efficient formation of this synaptic complex. Our results indicate that, in contrast to a model in which filaments of XLF and XRCC4 bridge DNA ends, binding of a single XLF dimer facilitates the assembly of a stoichiometrically well-defined synaptic complex.
Koenigsberg AL, Heldwein E. The dynamic nature of the conserved tegument protein UL37 of herpesviruses. J Biol Chem 2018;Abstract
In all herpesviruses, the space between the capsid shell and the lipid envelope is occupied by the unique tegument layer composed of proteins that in addition to structural, play many other roles in the viral replication. UL37 is a highly conserved tegument protein that has activities ranging from virion morphogenesis to directional capsid trafficking to manipulation of the host innate immune response and binds multiple partners. The N-terminal half of UL37 (UL37N) has a compact bean-shaped alpha-helical structure that contains a surface region essential for neuroinvasion. However, no biochemical or structural information is currently available for the C-terminal half of UL37 (UL37C) that mediates most of its interactions with multiple binding partners. Here, we show that PRV UL37C is a conformationally flexible monomer composed of an elongated folded core and an unstructured C-tail. This elongated structure, along with that of its binding partner UL36, explains the nature of filamentous tegument structures bridging the capsid and the envelope. We propose that the dynamic nature of UL37 underlies its ability to perform diverse roles during viral replication.
Pan B, Akyuz N, Liu X-P, Asai Y, Nist-Lund C, Kurima K, Derfler BH, György B, Limapichat W, Walujkar S, Wimalasena LN, Sotomayor M, Corey DP, Holt JR. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 2018;99(4):736-753.e6.Abstract
The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.
de Wispelaere M, Lian W, Potisopon S, Li P-C, Jang J, Ficarro SB, Clark MJ, Zhu X, Kaplan JB, Pitts JD, Wales TE, Wang J, Engen JR, Marto JA, Gray NS, Yang PL. Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chem Biol 2018;25(8):1006-1016.e8.Abstract
Viral envelope proteins are required for productive viral entry and initiation of infection. Although the humoral immune system provides ample evidence for targeting envelope proteins as an antiviral strategy, there are few pharmacological interventions that have this mode of action. In contrast to classical antiviral targets such as viral proteases and polymerases, viral envelope proteins as a class do not have a well-conserved active site that can be rationally targeted with small molecules. We previously identified compounds that inhibit dengue virus by binding to its envelope protein, E. Here, we show that these small molecules inhibit dengue virus fusion and map the binding site of these compounds to a specific pocket on E. We further demonstrate inhibition of Zika, West Nile, and Japanese encephalitis viruses by these compounds, providing pharmacological evidence for the pocket as a target for developing broad-spectrum antivirals against multiple, mosquito-borne flavivirus pathogens.
Lee S-J, Tran NQ, Lee J, Richardson CC. Hydrophobic Residue in Escherichia coli Thioredoxin Critical for the Processivity of T7 DNA Polymerase. Biochemistry 2018;57(40):5807-5817.Abstract
Bacteriophage T7 uses the thioredoxin of its host, Escherichia coli, to enhance the processivity of its DNA polymerase, a requirement for the growth of phage T7. The evolutionarily conserved structure and high degree of homology of amino acid sequence of the thioredoxin family imply that homologues from other organisms might also interact with T7 DNA polymerase to support the phage growth. Despite the structural resemblance, human thioredoxin, whose X-ray crystallographic structure overlaps with that of the E. coli protein, cannot support T7 phage growth. It does not form a complex with T7 DNA polymerase as determined by surface plasmon resonance and thus does not increase the processivity. Homologous scanning analysis using this nonfunctional homologue reveals that the 60 N-terminal and the 12 C-terminal amino acid residues of E. coli thioredoxin can be substituted for its human counterpart without significantly affecting phage growth. Comparison of chimeric thioredoxins, followed by site-directed mutagenesis, identifies leucine 95 as a critical element. This residue may contribute to hydrophobic interactions with the thioredoxin-binding loop of the polymerase; levels of DNA binding and thus nucleotide polymerization are significantly decreased in the absence of this residue. The results suggest that the specific interactions at the interface of thioredoxin and DNA polymerase, rather than the overall structure, are important in the interactions that promote high processivity.
Lian W, Jang J, Potisopon S, Li P-C, Rahmeh A, Wang J, Kwiatkowski NP, Gray NS, Yang PL. Discovery of Immunologically Inspired Small Molecules that Target the Viral Envelope Protein. ACS Infect Dis 2018;Abstract
Dengue virus is a major human pathogen that infects over 350 million people annually leading to approximately 500,000 hospitali-zations due to severe dengue. Since the only marketed vaccine, Dengvaxia, has recently been shown to increase disease severity in those lacking natural immunity, antivirals to prevent or treat DENV infection represent a large, unmet medical need. Small mole-cules that target the dengue virus envelope protein, E, on the surface of the virion could act analogously to antibodies by engaging E extracellularly to block infection, but a shortage of target-based assays suitable for screening and medicinal chemistry studies has limited efforts in this area. Here we demonstrate that the dengue envelope (E) protein offers a tractable drug target for preventing dengue infection by developing a target-based assay using a recombinantly expressed dengue serotype 2 E protein. We performed a high-throughput screen of ~20,000 compounds followed by secondary assays to confirm target-binding and antiviral activity and counter-screens to exclude compounds with non-specific activities. These efforts yielded 8 distinct chemical leads that inhibit dengue infection by binding to E and preventing E-mediated membrane fusion with potencies equal to or greater than previously described small molecule inhibitors of E. We show that a subset of these compounds inhibit viruses representative of the other three dengue serotypes and Zika virus. This work provides tools for discovery and optimization of direct-acting antivirals against dengue E and shows that this approach may be useful in developing antivirals with broad-spectrum activity against other flavivirus pathogens.
Samokhin AO, Stephens T, Wertheim BM, Wang R-S, Vargas SO, Yung L-M, Cao M, Brown M, Arons E, Dieffenbach PB, Fewell JG, Matar M, Bowman FP, Haley KJ, Alba GA, Marino SM, Kumar R, Rosas IO, Waxman AB, Oldham WM, Khanna D, Graham BB, Seo S, Gladyshev VN, Yu PB, Fredenburgh LE, Loscalzo J, Leopold JA, Maron BA. NEDD9 targets to promote endothelial fibrosis and pulmonary arterial hypertension. Sci Transl Med 2018;10(445)Abstract
Germline mutations involving small mothers against decapentaplegic-transforming growth factor-β (SMAD-TGF-β) signaling are an important but rare cause of pulmonary arterial hypertension (PAH), which is a disease characterized, in part, by vascular fibrosis and hyperaldosteronism (ALDO). We developed and analyzed a fibrosis protein-protein network (fibrosome) in silico, which predicted that the SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) is a critical ALDO-regulated node underpinning pathogenic vascular fibrosis. Bioinformatics and microscale thermophoresis demonstrated that oxidation of Cys in the SMAD3 docking region of NEDD9 impairs SMAD3-NEDD9 protein-protein interactions in vitro. This effect was reproduced by ALDO-induced oxidant stress in cultured human pulmonary artery endothelial cells (HPAECs), resulting in impaired NEDD9 proteolytic degradation, increased NEDD9 complex formation with Nk2 homeobox 5 (NKX2-5), and increased NKX2-5 binding to Up-regulation of NEDD9-dependent collagen III expression corresponded to changes in cell stiffness measured by atomic force microscopy. HPAEC-derived exosomal signaling targeted NEDD9 to increase collagen I/III expression in human pulmonary artery smooth muscle cells, identifying a second endothelial mechanism regulating vascular fibrosis. ALDO-NEDD9 signaling was not affected by treatment with a TGF-β ligand trap and, thus, was not contingent on TGF-β signaling. Colocalization of NEDD9 with collagen III in HPAECs was observed in fibrotic pulmonary arterioles from PAH patients. Furthermore, ablation or inhibition prevented fibrotic vascular remodeling and pulmonary hypertension in animal models of PAH in vivo. These data identify a critical TGF-β-independent posttranslational modification that impairs SMAD3-NEDD9 binding in HPAECs to modulate vascular fibrosis and promote PAH.
Wang L, Rowe GR, Jaimes A, Yu C, Nam Y, Pearson DS, Zhang J, Xie X, Marion W, Heffron GJ, Daley GQ, Sliz P. Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Rep 2018;23(10):3091-3101.Abstract
LIN28 is an RNA-binding protein that regulates the maturation of the let-7 family of microRNAs by bipartite interactions with let-7 precursors through its two distinct cold shock and zinc-knuckle domains. Through inhibition of let-7 biogenesis, LIN28 functions as a pluripotency factor, as well as a driver of tumorigenesis. Here, we report a fluorescence polarization assay to identify small-molecule inhibitors for both domains of LIN28 involved in let-7 interactions. Of 101,017 compounds screened, six inhibit LIN28:let-7 binding and impair LIN28-mediated let-7 oligouridylation. Upon further characterization, we demonstrate that the LIN28 inhibitor TPEN destabilizes the zinc-knuckle domain of LIN28, while LI71 binds the cold shock domain to suppress LIN28's activity against let-7 in leukemia cells and embryonic stem cells. Our results demonstrate selective pharmacologic inhibition of individual domains of LIN28 and provide a foundation for therapeutic inhibition of the let-7 biogenesis pathway in LIN28-driven diseases.
Debnath A. Engineering Symbiotic Microbiota for in Situ Delivery of Therapeutic Proteins. Harvard University 2018;Abstract
As symbiotic members of the human microbiome, Lactobacilli are an emerging class of living biotherapeutic agents capable of sustained and targeted drug delivery of protein biologics to the many organs they naturally inhabit. However, progress to this end remains limited by the paucity of genetic tools for manipulating these bacteria. We used synthetic biology techniques to build a tunable, broad host range expression system, and applied in silico techniques for de novo design of robust, strain-optimized secretion signals that direct protein export. Together, these components provide an approach to rapidly engineer niche-adapted Lactobacilli for in situ delivery of therapeutic proteins. We leveraged this platform to engineer model symbionts from the gastrointestinal and female genital tracts to secrete single domain antibody fragments, as candidate vectors for IBD immunotherapy and HIV immunoprophylaxis. This work advances Lactobacillus as a vehicle for drug delivery, and serves as a platform to accelerate development of diverse, microbiome-based medicines capable of addressing myriad disease.
Vo A, Fleischman NM, Froehlich MJ, Lee CY, Cosman JA, Glynn CA, Hassan ZO, Perlstein DL. Identifying the Protein Interactions of the Cytosolic Iron-Sulfur Cluster Targeting Complex Essential for Its Assembly and Recognition of Apo-Targets. Biochemistry 2018;57(16):2349-2358.Abstract
The cytosolic iron-sulfur cluster assembly (CIA) system assembles iron-sulfur (FeS) cluster cofactors and inserts them into >20 apoprotein targets residing in the cytosol and nucleus. Three CIA proteins, called Cia1, Cia2, and Met18 in yeast, form the targeting complex responsible for apo-target recognition. There is little information about the structure of this complex or its mechanism of CIA substrate recognition. Herein, we exploit affinity co-purification and size exclusion chromatography to determine the subunit connectivity and stoichiometry of the CIA targeting complex. We conclude that Cia2 is the organizing center of the targeting complex, which contains one Met18, two Cia1, and four Cia2 polypeptides. To probe target recognition specificity, we utilize the CIA substrates Leu1 and Rad3 as well as the Escherichia coli FeS-binding transcription factor FNR (fumerate nitrate reductase). We demonstrate that both of the yeast CIA substrates are recognized, whereas the bacterial protein is not. Thus, while the targeting complex exhibits flexible target recognition in vitro, it cannot promiscuously recognize any FeS protein. Additionally, we demonstrate that the full CIA targeting complex is required to stably bind Leu1 in vitro, whereas the Met18-Cia2 subcomplex is sufficient to recognize Rad3. Together, these results allow us to propose a unifying model for the architecture of this highly conserved complex and demonstrate what component or subcomplexes are vital for target identification.
Meleppattu S, Arthanari H, Zinoviev A, Boeszoermenyi A, Wagner G, Shapira M, Léger-Abraham M. Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major. Nucleic Acids Res 2018;46(7):3791-3801.Abstract
Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.
Sjodt M, Brock K, Dobihal G, Rohs PDA, Green AG, Hopf TA, Meeske AJ, Srisuknimit V, Kahne D, Walker S, Marks DS, Bernhardt TG, Rudner DZ, Kruse AC. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 2018;556(7699):118-121.Abstract
The shape, elongation, division and sporulation (SEDS) proteins are a large family of ubiquitous and essential transmembrane enzymes with critical roles in bacterial cell wall biology. The exact function of SEDS proteins was for a long time poorly understood, but recent work has revealed that the prototypical SEDS family member RodA is a peptidoglycan polymerase-a role previously attributed exclusively to members of the penicillin-binding protein family. This discovery has made RodA and other SEDS proteins promising targets for the development of next-generation antibiotics. However, little is known regarding the molecular basis of SEDS activity, and no structural data are available for RodA or any homologue thereof. Here we report the crystal structure of Thermus thermophilus RodA at a resolution of 2.9 Å, determined using evolutionary covariance-based fold prediction to enable molecular replacement. The structure reveals a ten-pass transmembrane fold with large extracellular loops, one of which is partially disordered. The protein contains a highly conserved cavity in the transmembrane domain, reminiscent of ligand-binding sites in transmembrane receptors. Mutagenesis experiments in Bacillus subtilis and Escherichia coli show that perturbation of this cavity abolishes RodA function both in vitro and in vivo, indicating that this cavity is catalytically essential. These results provide a framework for understanding bacterial cell wall synthesis and SEDS protein function.
Rovere M, Sanderson JB, Fonseca-Ornelas L, Patel DS, Bartels T. Refolding of helical soluble α-synuclein through transient interaction with lipid interfaces. FEBS Lett 2018;592(9):1464-1472.Abstract
α-Synuclein (αSyn) is a key player in the pathogenesis of Parkinson's disease and other synucleinopathies. Here, we report the existence of a novel soluble α-helical conformer of αSyn, obtained through transient interaction with lipid interfaces, and propose dynamic oligomerization as the mechanism underlying its stability. The conformational space of αSyn appears to be highly context-dependent, and lipid bilayers might thus play crucial roles as molecular chaperones in a cellular environment.
Levine ZG, Fan C, Melicher MS, Orman M, Benjamin T, Walker S. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. J Am Chem Soc 2018;140(10):3510-3513.Abstract
The essential mammalian enzyme O-GlcNAc Transferase (OGT) is uniquely responsible for transferring N-acetylglucosamine to over a thousand nuclear and cytoplasmic proteins, yet there is no known consensus sequence and it remains unclear how OGT recognizes its substrates. To address this question, we developed a protein microarray assay that chemoenzymatically labels de novo sites of glycosylation with biotin, allowing us to simultaneously assess OGT activity across >6000 human proteins. With this assay we examined the contribution to substrate selection of a conserved asparagine ladder within the lumen of OGT's superhelical tetratricopeptide repeat (TPR) domain. When five asparagines were mutated, OGT retained significant activity against short peptides, but showed limited limited glycosylation of protein substrates on the microarray. O-GlcNAcylation of protein substrates in cell extracts was also greatly attenuated. We conclude that OGT recognizes the majority of its substrates by binding them to the asparagine ladder in the TPR lumen proximal to the catalytic domain.

Pages